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Abstract: - Conventional distribution systems, growing in complexity due to increasing penetration of the 
distributed generation such as wind and solar plants, lack observability or monitoring capabilities in order to 
allow higher and higher levels of penetration of distributed energy resources such as electric vehicles and 
batteries. The key is the distribution system state estimation, which can provide the observability. Thus, in this 
paper we are focusing on pseudo measurements calculation, based on real prosumers characterisation, which 
are among the topology parameters and phasor measurements one of the key inputs into the distribution system 
state estimation. 
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1 Introduction 
Conventional power systems are still characterized 
by a very strict configuration. Based on centralized 
generation, electricity follows a very well defined 
path, from generation to consumption, going 
through transmission and distribution grid, until it 
reaches final consumers. However, in industrialized 
countries typical consumers are also expected to 
become electricity producers due to the ongoing 
widespread deployment of distributed generation 
(DG) and energy storage elements, commonly 
called distributed energy resources (DER). DG, 
considered as small generators (in terms of power 
production), are connected at different levels (e.g. 
Medium Voltage (MV), Low Voltage (LV) and are 
depending on their size and geographical location. 
Hence, the structure of the distribution networks is 
thus substantially changing. Furthermore, the 
electrical grid capacity is also questioned with the 
prospects of increased load due to foreseen gradual 
replacement of conventional Internal Combustion 
Engine (ICE) vehicles by Electrical Vehicles (EVs) 
[1]. Thus, we are witnessing a shift from a mainly 
unidirectional power flows towards a fully 
bidirectional paradigm, where traditional consumers 
and producers are changing into so called prosumers 
(consumers & producers). 

Further, due to renewable plants peculiar nature 
of operation their output may change drastically 
over a short span of time. E.g. the wind can vary 
significantly from one part of the day to another, 
and even over the course of a few minutes the power 

output of a wind farm can change dramatically. 
Solar power can be described in a similar manner. 
For instance, a small cloud can reduce the output of 
a photovoltaic solar farm for a few minutes and then 
raise it back to its previous level [2]. The less 
predictable generation and the continuously 
changing behaviour of the consumers make power 
flows more uncertain. This requires increasingly 
sophisticated measurement instruments and 
techniques for power quality monitoring, fast 
detection of anomalous events and, accurate 
distribution system state estimation (DSSE) [3]. 

All power systems have some inherent level of 
flexibility designed to balance supply and demand at 
all times. Variability and uncertainty are not new to 
power systems because loads change over time in 
sometimes unpredictable ways, and conventional 
energy resources fail unexpectedly. Variable 
renewable energy supply, however, can make this 
balance harder to achieve. In order to achieve higher 
proportion of renewable energy the grid control 
needs to be extended to the area where DER are [4], 
and where new high consumers are expected (e-
cars) i.e. from the transmission network closer to 
users, i.e. to the distribution grid, thus start 
performing functionalities that were traditionally 
performed on the transmission network [5]. 

Distribution systems lack observability or 
monitoring capabilities, despite the fact that they 
need this due to their considerable diversity, 
variability, and vulnerability to disturbances. 
Several Phasor measurement units (PMU) can 
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generally be found in the distribution network, but 
not in the quantity and density to provide all the 
information required as imposed with future 
demands. Advanced Metering Infrastructure (AMI) 
with smart meters (SM) are in the installation phase 
in the majority of the western countries and improve 
grid observability; still, 15 min data from them 
gives insight into power consumption, though real 
time state cannot be inferred. Further, renewables 
are changing their output on much more rapid time 
scale than that. According to [3] empirical 
measurements are required for several purposes:  

• diagnosis of specific impacts of DER, 
• establishing a baseline against which to 

compare impacts of DER, 
• validation of new distribution feeder models 
• ongoing monitoring to support operations 

and planning,  
• exploration of as yet unknown phenomena 

on distribution systems.  
In the grid the voltage (or current) phase angle is 

the key to power flow, dynamics and stability. 
Voltage phase angle measurement from the 
distribution system might address both known and 
as yet poorly understood problems, such as dynamic 
instabilities on the distribution grid, to enable new 
applications in the context of growing distributed 
intelligence and renewable resource utilization.  

To achieve reliable and accurate knowledge of 
the grid condition, the real time DSSE is of key 
importance [5]. The benefit of the DSSE is that it 
can take into account all types of available 
measurements, thus reducing the investment costs 
into the required measurement infrastructure. 
Further, DSSE provides estimation of the grid state 
also on the grid nodes where measurement devices 
are not located. 

In regard to power systems, the state estimation 
(SE) has been extensively studied and implemented 
in the transmission grid. In order for distribution 
grid to be able to facilitate renewable energy 
sources, large batteries and EV it is necessary to 
develop and implement the SE in distribution grids. 
Because of some inherent differences between 
transmission and distribution grids, straight forward 
implementation of the transmission SE software into 
distribution grids is not possible. Main distribution 
(in comparison to transmission) system 
characteristics affecting the DSSE are [6, 7]: 

• High resistance to reactance ratio in lines and 
cables; 

• Phase imbalance; 
• Large number of nodes in comparison to 

transmission networks; 

• Uncertainty of network parameters.  
In development of the DSSE this characteristics 

need to be addressed [6, 8]. Within the FP 7 
SUNSEED project one of the main goals were to 
establish the observability of distribution system 
using the DSSE in the real testbed [8]. In general for 
the SE the following inputs are required [6]: 

• topology data obtained from the DSO,  
• synchro phasor measurement,  
• AMI and pseudo measurements. 
However, in this paper we are focusing on AMI 

and pseudo measurements calculations that can be 
used in DSSE calculation. Thus, the real AMI 
measurement was analysed. We describe our 
approach for obtaining near real time load 
estimation based on the latest AMI measurements. 
More specifically, we are dealing with the 
characterisation of prosumers, based on AMI 
measurements from the observed testbed(s). 

The paper is structured as follows. Section 2 
introduces prosumers characterization. The pseudo 
measurements calculation based on prosumer 
characterization from SM is proposed and evaluated 
in Section 3. Section 4 concludes the paper. 
 
 
2 DS prosumers characterization 
The deployment of SM in low voltage distribution 
networks, within the context of AMI systems, will 
enhance the data collection of electric energy 
consumption, processing and analysis capabilities. 
In order to ensure higher reliability and efficiency in 
distribution power systems, the information on 
prosumers electric consumption/production patterns 
is particularly important. In fact, the communication 
between utilities companies and electricity 
customers aims to provide information on 
consumption of consumers in order to make a better 
use of electrical energy. 

Furthermore, the knowledge about costumer’s 
behaviour can be a useful decision tool, not only for 
utilities, but also for consumers [9]. The knowledge 
resulting from the study of load profile can be used 
by the utilities to identify the aspects that cause the 
increase of the diagrams’ peaks and development of 
specific prosumer’s contracts.  

In addition to above demand response scenarios, 
the usage of AMI is of paramount importance in the 
light of the limited number of real-time 
measurements in distribution systems. Thus, the 
increased smart metering data availability from LV 
consumers is necessary to provide near real time 
load estimates, which can be used also for 
calculation of pseudo-measurements, used as an 
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input in the DSSE. Though the planned frequency 
update of the state is at the highest 1 second, the 
AMI measurements are reported only once every 15 
minutes. In general this means that at the time of 
new state calculation only obsolete AMI 
measurements are available. 
 
 
2.1 AMI measurements description 
SM is a vital element of an advanced AMI dedicated 
to measuring ‘end users’ (prosumers) energy 
consumption and production. Main AMI 
functionality is billing improvement and remote 
asset monitoring. Billing data is usually generated 
on 15 min interval where intervals are collected and 
sent via data concentrator to billing management 
centre (HES) once per day, where they are analysed. 
Since SMs allow us to monitor not just energy 
(active, reactive) but also different parameters 
(varies from AMI vendor to vendor), DSO started 
collecting various data used for distribution power 
grid stability, energy loss calculation, fault 
detection, power quality monitoring, etc. 
Nevertheless not all data could be sent to the HES 
due to communications limitations (PLC, 
GSM/GPRS) and the big data handling. Due to that 
those reasons the DSO has to make a compromise 
what parameters/data should be transmitted to HES 
and used for further analyses, besides billing 
purposes. 

Current AMI measurements that DSOs 
monitor/gather from AMIs can be summarised as: 
• Grid visualization values (delivery point load 

and network status - V, P, Q, f, etc.);  
• Fault management values (alarms, last gasp, 

anti-tamper, multi-energy events, etc.);  
• Asset management values (endpoint 

consumption measurement, billing, profiling, 
end user interaction, etc.). 

AMI meter captures instant voltage, current and 
further calculates effective value that is used for 
calculating energy values (kWh) in compliance with 
standard SIST EN 50470-1 and SIST EN 50470-3. 
AMI meter could use more logs but main ones are 
Load Profile and Log Book. In Load Profile we can 
find active and reactive power, f, U, I, etc. In Log 
Book we can find different messages (power outage, 
power up/down, various alarms, etc.) Due to the 
vast number of choices what AMI meter can capture 
every DSO has its own demands for 'must have' 
values. 

Within the SUNSEED project [8] the data from 
AMI meters is transferred securely through 
established DSO communication infrastructure and 

is gathered in the DSO databases, from where it is 
forwarded to SUNSEED main database storage [5].  
 
 
2.2 Prosumer behaviour characterisation  
Based on the measurement we identify the load 
profiles for individual users. It is worth noting that 
we are investigating the real measurements from the 
selected testbeds. Load profiles for users are a 
baseline for pseudo measurement calculations as 
described in section 3. 

The initial overview of the historical AMI data 
shows that loads depends on the day of the week 
(working day, Saturday, Sunday). This is in 
particular true for the big industry consumers as 
shown in Fig. 1 (time is starting at Monday 
midnight). It is clearly seen that the both consumers 
have typical daily routine during the weekday, while 
on Saturdays and Sundays the consumption is much 
lower in particular if the Saturday and Sunday are 
not working days. Furthermore, also during 
weekdays the consumption can be very low due to 
Bank holidays.  

 

 

 
Fig. 1: Weakly loads (28 weeks) (P) raw data for 

two selected consumers 
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In the observed testbeds there are few solar 
plants whose profile heavily depends on the weather 
conditions and the month of the year (January … 
December), due to sun insensitivity. The raw data 
showing the daily production in kW (15 min 
measurements) for a year (envelop is easy visible) 
are depicted in Fig. 2. The envelop showing the 
difference between winter and summer is easy 
visible. The daily production for one day, (i.e. 28 
one-day consecutive curves) is shown in Fig. 3. The 
production heavily depends on the weather 
conditions (e.g. sunny, cloudy …). The effect of 
cloudiness is further evaluated in [2]. 

 

 
Fig. 2: Daily production of solar plant (P) for 1 year 

 

 
Fig. 3: Daily production of solar plant (P) for 1 

day (28 consecutive days) 
 
Based on historical real measurement in order to 

identify typical load profiles we apply clustering 
algorithms to each individual AMI measurement 
data. Clustering can be defined as the process of 
partitioning a large database into groups (or 
clusters) based on a concept of similarity or 
proximity among data. There is a wide variety of 
clustering algorithms, although there is no single 
algorithm that can, by itself, discover all sorts of 

clusters shapes and structures. Good clusters present 
high similarity within a certain group and low or a 
very different similarity among objects of others 
classes [9]. Despite the several clustering methods 
for cluster analysis, for a certain database, each 
clustering method may identify groups which 
member objects are different. Thus, two important 
questions need to be addressed, associated to the 
clustering procedure, namely, what is the best 
clustering method that produces the best data 
partition and how many clusters should be presented 
in the data [9]. 

The objective of data clustering techniques 
consists of dividing a data set X composed of n data 
patterns {x1,...,xn } into K clusters {C1,...,CK } , such 
that similar data patterns, xi ,xj , are placed in the 
same cluster, i.e. { xi ,xj }∈Ck , and dissimilar data 
patterns are grouped into different clusters, i.e. 
xi ∈ Ck, xj ∈ Ck , k ≠ l . The set of clusters 
P = {C1,...,CK } is referred to as data partition.  

In [9] authors assembled the representative load 
diagrams of electric customers in clusters, according 
to a similarity criterion. Several clustering 
algorithms have been used, namely: Complete-link 
(CL); Average-link (AL); Ward´s-link (WL); 
Normalized Cut algorithm (NC) and K-means 
algorithm (KM). The clustering algorithm results 
showed that the best partition according to the 
clusters validity indices was the k-means algorithm. 
It was identified that the suitable number of clusters 
(K) to this case study was two taken into account 
their validity indices. However, with a visual 
analysis of the obtained load profiles for each 
cluster it was verified that this number was not 
adequate [9]. Thus, for the profiling we used the 
well-known K-means algorithm. However, we are 
aware that some other clustering methods should be 
evaluated as well as they might better utilise WLS 
(weighed least squares) algorithm used in the State 
Estimation [6, 10]. 

The K-means algorithm [11] is probably the best 
known data clustering algorithm. K-means tries to 
minimize the sum of squares within cluster: 

 
2

1 i k

K

i k
k x C

x x
= ∈

−∑ ∑      (1) 

 
where 

2

i kx x−  is the Euclidian distance 

between pattern xi and its closest cluster centroid xk.  
 
This algorithm takes as parameter the desired 

number of clusters K and randomly chooses K data 
patterns as the initial centroids {x1,...,xK } of each 
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cluster. Then, K-means algorithm iterates between 
two steps: find for each pattern xi ∈ X the closest 
centroid xk and assign it to the corresponding cluster 
Ck and update each centroid xk as the mean vector of 
the corresponding cluster Ck, i.e.: 

 
1

j k

k i
x Ck

X X
C ∈

= ∑     (2) 

 
where kC  is the number of data patterns that 

belong to Ck.  
 
This process is repeated until no pattern 

assignments are changed from one iteration to the 
next one meaning the algorithm converged to a 
(local) minimum. 

The identified clusters on per user bases will be 
used also for near real time load estimation as 
described in section 3. For the determination of 
number of clusters per user the visual evaluation 
shows that in general 3 main clusters covers the 
main profiles. As an example in Fig. 4 we show 
clustering of industry consumer to 3 clusters (28 
consecutive days). In addition to typical 
representative of the cluster we also show raw data, 
clustered data and standard deviation (STD) of 
clustered data from their representative. 

However, because we would like to 
automatically determine the appropriate number of 
clusters we compare sums of the distance from 
every pattern in a cluster to the average of the 
cluster (denoted as SUM(CK) of each curve for 
different number of clusters K started with one 
cluster K= 1,2,3…. Obviously, with the increase of 
the number of clusters K the sum is decreased. 

For easier comparison we also defined the 
normalised sum of cluster Ck as: 

 

( ) ( )
( )1

K
norm K

SUM C
SUM C

SUM C
=    (3) 

 
Thus, if there is only one cluster the SUMnorm is 

1. Graphical representation of SUMnorm for up to 5 
clusters for some typical AMI meters is shown in 
Fig. 5. It can be seen that in the case of more than 3 
clusters, is not improved significantly in the 
majority of cases. 

The same analysis was done for the reactive 
power (Q).  

 

 
Fig. 5: SUMnorm in dependence of number of 

clusters 
 
In the case of solar plants they can be put in 

general in at least two clusters, either working fully 
or not, as shown in Fig. 6 (three clusters are shown 
as an example).  

Based on above characterization and clustering, 
we developed clustering based algorithm for load 
estimation, described in the next section, which 
serves as an input to DSSE. 
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Fig. 4: Example of clustering of an industry consumer. 
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3 Pseudo measurement calculation 
While measurements and monitoring of power 
systems transmission grids is well established and 
pervasive, the same cannot be said for distribution 
grids. Here measurements nodes are very sparse, 
often limited to primary substations, and absent in 
some portions of the grid, particularly in the low 
voltage (LV) network. In the light of implementing 
of state estimation more broadly in the distribution 
grid, it is of paramount importance that by lacking 
dedicated measurements it should be augmented 
with all available measurements also from AMI 
smart meters (domestic and industrial), and most of 
all with pseudo measurements.  

Historical data collected over the years are used 
to build load profiles (mainly to be used in 
planning) that are then also used as sources for near 
real time measurement estimation and calculation of 
pseudo measurements, as discussed in previous 
section. In addition they can be used also for load 
forecasting purposes.  

The quality of state estimation is highly 
dependent on modelling of loads. This is in 
particular true in the absence of any real 
measurement of loads which are highly distributed 
and diverse. Because of this they are usually treated 
as random variables with appropriate mean and 
variances [10]. Thus the accurate load models are 
critical for state estimation [10].  

In the distribution network the load modelling at 
each injection node is done based on different 
measurements, which are (are not) available at 
particular node. In general, we can determine three 
“classes” of measurements: 

• Real time measurement node: the 
consumed/produced P, Q power or even 
phasors are provided in real time. In this case 
the information can be used directly in SE. 

• Near real time measurement node: the 
consumed/produced P, Q power is provided 
in near real time. Typical sources of such 

measurement are smart meters that reports 
the measurements P, Q power in intervals 
(typically 15 minutes) which are than the 
aggregated and measurements are send out 
delayed (typically from 15 minutes to 1 day) 

• Unmeasured nodes: in this case usually the 
load profiles are developed for each type of 
customer (such as residential, industrial, etc), 
based on some monitoring and energy bill 
data. Historical samples obtained for 
different seasons, days and times, are stored 
separately for different load types 
(residential, industrial etc.). 

In the SUNSEED  system [8] for the real time 
measurements we will use PMU like devices at the 
“important” nodes, while the AMI smart meters are 
installed at each prosumer, generating the near real 
time measurements (P, Q power) which will be send 
to central node with approximately 15 min delay. 
Based on measurements information and historical 
data the estimated load is calculated as described 
further in this section. In our case we do not have 
unmeasured nodes with prosumers, thus this case 
will not be further evaluated.  

In the following based on historical data from the 
smart meters we evaluate different load estimation 
methods. The particular attention is given on 
“quality” of such estimates, which serves as one of 
the parameters into DSSE.  

For the comparison between different load 
estimation algorithms used, two ordinary statistical 
measures are used to quantify the difference 
between estimated and actual values: Relative Root 
Mean Square Error (RRMSE) and Mean Absolute 
Percentage Error (MAPE), given in (4) and (5) 
respectively. 
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Fig. 6: Clustering of a solar plant 
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First we evaluate the algorithm described in [12] 

(denoted as Prev_day_based), which uses near real- 
time information from AMI along with previous 
day’s data. Their estimates are done in one day old 
data. It deploys a simple time series model, given as. 

 
1,

, ,
1,

i today
i today i prevday

i prevday

P
P P

P
−

−

=    (6) 

 
where:  
i, i-1 load estimation time interval and previous 

time interval, respectively (i.e. 15 min interval in 
our case)  

today, prevday day of load estimation and 
previous day (weekday or weekend depending on 
day of estimation, (e.g. prevday of Saturday 
(Sunday) is Saturday (Sunday) a week before), 
while for working day prevday is previous working 
day). 

Pi corresponding electricity consum-
ptions/productions. 

 
The results for some AMI meters and different 

estimation algorithms are summarised in Table 1. 
The results are based on historical data and are 
based on about 1000 consecutive estimates (100 
days, each 15min interval). The results for 
Prev_day_based algorithm RRMSE are between 
12% and 58% while for the MAPE it is between 
10% and 63%. This results are not satisfying, thus 
we investigate two different approaches. However, 
as we are working on 15 min scale, we try to use for 
the estimate just the same value as it was the 
previous one, according to equation (7) denoted as 
Prev_measurement_based.  

 
   1i iP P−=         (7) 
 
where: i, i-1  load estimation time interval and 

previous time interval, respectively (i.e. 15 min 
interval in our case) 

 
The results for “Prev_measurement_based “ 

algorithm are summarised in Table 1 (5 selected 
consumers). On so short scale (15 min) it 
outperforms significantly the “Prev_day_based” 
algorithm.  RRMSE is lower for up to 28 percentage 
points while MAPE is lower up to 15 percentage 
points.  

Table 1: RRMSE MAPE for different estimation 
algorithms for selected AMI meters (P). 

 Prev_day_based 
Prev_measure-
ment_based Clustering_based 

A
M
I 

RRMSE MAPE RRMSE MAPE RRMSE MAPE 

6 24.9% 10.4% 16.8% 9.5% 14.5% 8.7% 
9 52.1% 63.5% 30.3% 41.4% 29.7% 41.7% 

11 58.4% 17.2% 30.0% 9.8% 29.5% 10.1% 
16 23.7% 18.4% 15.5% 12.9% 14.9% 12.7% 
17 12.8% 10.0% 9.1% 7.1% 9.0% 7.0% 

 
The further in depth analysis of the errors as 
depicted in Fig. 7  (example for AMI #6 for few 
days) show that the highest errors is observed when 
there are high changes in the Load (P) as we 
expected. The red line presents the error for 
Prev_measurement_based algorithm while the green 
one represents the error for Clustering_based 
algorithm discussed below. 

 

Fig. 7: Actual measurements (blue) and error (green, 
red) of estimated value (kW) for AMI# 6 

 
Thus, we propose a clustering based algorithm 

(Clustering_based), which refines the previous 
value on the cluster based method (for clustering see 
also section 2) as explained in the following Flow 
chart (Fig. 8) and shown in (8). 

 
( )1 , , 1i i k i k iP P C Cα− −= + −     (8) 

 
where: 
i, i-1 load estimation time interval and previous 

time interval, respectively (i.e. 15 min interval in 
our case) 

Ck the closest Cluster k to last m measurements  
α    the impact of the cluster 
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Fig. 8: Flow chart of Clustering based algorithm 

 
The following parameters (giving the optimal 

results) are used in the evaluation: number of 
clusters K = 5; based calculated on last D = 38 days. 
m = 96 (i.e. 1 day),  is set to 0.2. The results 
summarised in Table 1 show that the estimated 
values can be further improved. Even though the 
average improvement is not significant the in depth 
investigation reveals (see Fig. 7) that the pick errors 
are smaller in the case of the proposed clustering 
based method (green). In Table 2 we present results 
that have RRMSE and MAPE on per sample bases 
are higher than 5% (i.e. as denoted in (9)). 

 

   (9) 

 
Similar results were achieved also for reactive 
power Q.  
 

Table 2: RRMSE MAPE for different estimation 
algorithms for selected AMI meters (P). 

 Prev_measurement_based Clustering_based 
AMI  RRMSE MAPE RRMSE MAPE 

6 27.2% 26.1% 22.0% 21.1% 
9 37.2% 60.8% 36.2% 59.6% 

11 47.4% 54.6% 47.1% 52.1% 
16 21.5% 27.8% 19.6% 24.5% 
17 9.9% 8.3% 9.8% 8.2% 

 
We apply the same algorithms to solar plants and 

the results are summarised in Table 3, however, 
results for Prev_day_based calculation is not 
relevant due to infinitive numbers (division by zero) 

Load estimation which serves as an injection 
parameter in SE is only one of the parameters, as 
each load estimation value should be accompanied 

by the measure of how good the estimation is. Thus 
we are analysing the mean value and standard 
deviation of errors of estimated values. For all the 
consecutive samples they are summarised in 
Table 4. 
 

Table 3: RRMSE MAPE for different estimation 
algorithms for selected AMI meters (P) solar plant. 

 

Prev day based 

Prev 
measurement 
based Clustering based 

AMI  RRMSE MAPE RRMSE MAPE RRMSE MAPE 
20 N/A N/A 16.1% 16.3% 15.9% 15.5% 
21 N/A N/A 17.3% 20.4% 17.0% 19.4% 
 

However, in depth investigation reveals that 
standard deviation is heavily dependent on time of 
the day (for all estimation algorithms). As time of 
day influence the STD significantly it should be 
taken into account. Thus, we divide the day in 24 
hours and calculate the mean and STD for each hour 
(4 measurement on 15 min) for N_days (i.e in our 
case N_days = 100). The results for a typical AMI 
meters are shown in Fig. 9. 
 

Table 4: Mean and STD of error for different 
estimation algorithms for selected AMI meters (P). 

 Prev_measurement_based Clustering_based 
AMI  mean std mean std 

6 0.01 64.34 0 55.75 
9 0 5.46 0 5.4 

11 0 6.25 0,01 6.13 
16 0 2.3 0 2.2 
17 -0.01 13.73 -0.02 13.63 

 
 
 

 
 
Fig. 9: Mean and STD for AMI #6, #17 and #16 
 

WSEAS TRANSACTIONS on POWER SYSTEMS Ales Svigelj

E-ISSN: 2224-350X 256 Volume 13, 2018



 

 

Thus, as Load estimation input for SE we use Pi 
and Qi, calculated using Clustering_based algorithm 
and the corresponding STD (based on historical 
values) for the particular time slot (i.e. 1 hour). In 
such a manner the “reliability” of Load estimation 
does not depend only on particular AMI meter, but 
also on time of the day. The pseudo measurements 
based on load estimation are than calculated using 
load flow calculation and used in the state 
estimation algorithm. 
 
 
4 Conclusion 
With the increasing penetration of distributed 
energy resources, the smart grid needs more and 
deeper monitoring and control to maintain stable 
operation. The key is distribution system state 
estimation, where the pseudo measurements from 
AMI are of paramount importance. Thus in this 
paper, we propose the pseudo measurements 
calculation based on prosumers characterization 
from the smart meters in the real network used 
within FP 7 SUNSEED project.  The results show 
that the proposed Clustering_based algorithm 
outperforms both Prev_measurement_based and 
Prev_day_based alghorithms. Thus, we used it in 
the real testbed state estimation calculation. 
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